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1. Introduction 

Let R be a commutative Noetherian ring in which 2 is invertible. In [3] Karoubi 
has proved that if R is a regular ring, then W(R[T, T -1 ])-~ W(R)(~ W(R) where W 
denotes the Witt ring functor. In this paper we show that if R is a ring of dimension 
one with finite normalisation/~, then for any quadratic space q over R[T, T -l ] 
there exist quadratic spaces q0, ql over R such that [q] = [q0 _1_ Tql ], [- ] denoting the 
equivalence class in W(R[T, T-1]). Using this, in Theorem 2.4 we prove that 

O-oK ~ W(R)@ W(R) ---~ W(R[T, T -~ 1)~0  

is an exact sequence of groups where K is the kernel of the canonical map 
W ( R ) - o W ( g ) ( ~ W ( R / ~ ) ,  ~ being the conductor of R in /~. We also prove 
(Theorem 3.2) that quadratic spaces over R[T,T -1] of Witt index _>2 are 
cancellative. This is an improvement of the general cancellation theorem [8, 
Theorem 7.2] for this particular case. The proof of these results uses the structure 
of the orthogonal group of isotropic quadratic spaces over kiT, T - l ] ,  where k is a 
field, which is given in Lemma 1.3. 

In this paper we assume that 2 is invertible in all rings considered. Also for any 
ring R, by ~(R) we will mean the class of all finitely generated projective R-modules 
and//2(R) = {X E R [x  2 -- 1 }. 

I would like to thank Dr. Parimala for her interest in this work. 

1. Orthogonal transformations 

In this section, we include a few lemmas which are needed in this paper. 
Let R be a commutative ring. Let (Q, q) be a quadratic space over R, h be the 

hyperbolic plane (0 1) and let ReO)R f  be the underlying module of the form h with 
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( e, f )  = 1, ( e, e) = 0 = ( f  f ) .  For w ~ Q the elements JEw, E* ~ O( q 2_ h) are defined 

as follows [8, p. 291]: 

Ew(z) = z + (z, w)e, z e Q, 

and 
Ew(e)=e , E w ( f ) =  - w - q ( w ) e +  f 

E * ( z ) = z + ( z , w ) f ,  z ~ Q ,  

Ew(e) = - w -  q (w) f  + e, E * ( f )  =f.  

Let EOR(q,h) denote the subgroup of  OR(q2-h) generated by the set 
{Ew, E*[ w e Q }. Recall [4] that  OR(h) normalises EOR(q, h) .  Let GR(q, h) denote 
the subgroup EOR(q, h). OR(h) of  OR(q 2- h). Let U(R) denote the set of  units of  R. 
For  any u in U(R) let z,, denote the element (~ u°0 of  OR(h). 

Lemma 1.1. Let  k be a field o f  characteristic ~ 2 and q be a quadratic space over 
k. If, for  a ~ k *  za~EOk(q,h), then a = b  2 where b~k* .  

Proof. See [2, p. 27, Theorem 4.6]. 

Lemma 1.2. Let  R be a domain in which 2 is a unit. Let (Q, q) be a quadratic space 
over R which represents a unit. Then, f o r  any unit u in R, Id 2- Zu~ ~ EOR(q, h). 

Proof. Let w e Q such that q(w) E U(R). Let s e R such that  1 - sq(w) = u- 1. Then, 

we have [2, p. 16, 3.16] 

Zu 2 = E*suw- , E_uwE*wEw. 

Thus Zu 2 ~ EOR(q, h). 

Lemma 1.3. Let  k be a field o f  characteristic ~ 2 and (Q, q) a quadratic space over 
R = k[X, X -~ ]. Then OR(q 2_ h) = Ge(q, h). 

Proof. The proof  is by induction on rank q. If rank q = 0, then OR( q 2_ h) = OR(h). 
We assume r a n k q = n > O .  By [5, Lemma 1.2] Q has an orthogonal basis 

{el, ... ,en} with q(ei)=)t i where AiEk* o r  Ai=l.liX , FliEk*. As in the proof  of  
[6, Lemma 1.1] it follows that  OR(q) c_ GR(q, h). Let ct e OR(q 2- h) with ct(f) = 
~ + a e + b f ,  where ~=~iaiei ,  ai, a , b ~ R ,  ( e , e ) = O = ( f , f )  and (e,f)=l.  In case 
~ = 0  or ~=~0 and a or b is a unit in R, we see that aeGg(q ,h ) ,  as in the proof  of  
[6, Lemma 1.1]. Suppose that  ~q:0 and neither a nor b is a unit. We induct on 
min(d(a), d(b)) where d denotes the Euclidean function on R induced by the degree 
funct ion on k[X].  Consider the ideal bR. There exists p c  k[X], with 1 + X p  ~ bR. 
Let b ' ~ R  be such that  1 + X p = b b ' .  For each i= 1, . . . ,n  there are gi~k[X]  and 

ci e R  with ai =gi + ci(1 +Xp)  =gi + cibb'. Then 

E~,~b'ciei°t~(f)=~/giei+(a-b'~i aiciAi-½bb'2~i 
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and gi ~k[X]  for all i=  1, . . . ,  n. Thus, we may assume 

or(f) = ~_, aie i + ae + b f  and a i ~ k[X] for i=  1,. . . ,  n. 
i 

Assume d(a) < d(b), the p roof  being similar if d(b) < d(a). If  a = a 'X  s 
( a ' , X ) =  1 and a ' e k [ X ] ,  then 

with 

Zx s'o ct(f) = ~ ale i + a'XS+S'e + bX-S ' f  
i 

and d(a)=dega'=d(a'XS+S').  Therefore we may also assume that or ( f )=  

~, ia ie i+ae+bf  with a i6k[X] ,  a = a ' X t ~ k [ X ] ,  1>>0, ( a ' , X ) = l ,  a '~k[X] .  For 
each i = 1, . . . ,  n, given a i and a '  there a r e  I i and m i in k[X] with a i = a ' l  i + mi, m i = 0 
or deg m i < deg a ' =  d(a). Thus ai = aqi + mi with qi ~ R and m i E k[S] ,  d(mi) < d(a). 
Let w = -  ] ~ i q i e i  . Then 

E_w o ct(f) = (~ + aw) + ae+ b"f  where b" = b - aq(w) - (~, w). 

Since q(ct(f)) = 0, we have 2~; a22i + 2ab = 0. Hence 

Ei m 2 2 i = - a ' X l (  2 b + 2  ~i qimiAi+ ~i aq2Ai)" 

We choose / ->0  so that XlXim2; i. If maxi{degm22i} is attained at j ,  we have 

d ( ~  m22i)_<deg(~,  m2)ti) - I <deg(m2;tj)-  I 

< 2 deg mj < 2 deg a '  = 2d(a). 

Thus d(~i m2i 2i) < 2 d(a) and d(q(~ + aw)) < 2 d(a). Since q(E*_wa(f)) = 0, we have 
q(~ + aw)= -2ab" and d(b")< d(a). Thus we have reduced min(d(a), d(b)) by apply- 
ing elements of  Gn(q, h) to a.  During this procedure the first n components of  a ( f )  
remain polynomials,  and hence, repeating the above process only involves applying 
elements of  OR(h) and so we continue decreasing min(d(a),d(b)) till it becomes 
zero. 

Remark 1.4. Let k be a field with characteristic different from 2 and q be a 
diagonisable space over R = k [X, 1 / f ] ,  f e  k[X]. Then it can be similarly proved that 

On(q .1. h) = Gn(q, h). 

2. Stable structure of quadratic spaces over R[T, T -1 ] 

Let R be a reduced ring with finite normal isa t ion/?  and let ~ be the conductor 
of  R in /~. Let A , . A , A / ~ , A / ~  denote the Laurent extensions R[T ,T- I ] ,  
/~[T, T -1 ], (R/~)[T,  T- I ] ,  (/~/~)[T, T -l ] respectively. Then we have the Cartesian 

squares 
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R ,R 

(I) 1 ]" and (2) 
R/if , g/~ 

A 

A / i f  

,A 

, M / i f  

By ' - '  we will denote 'going modulo ( T - 1 ) ' .  

Lemma 2.1. Let S be a ring in which 2 is invertible. Then 

/z2(S[T , T -l  ]) = ] / 2 ( S ) .  

Proof. Let f=T-S(ao+alT+'"+arTr)elz2(S[T,T-l]) .  Suppose first that S is 
reduced. The equation f2= 1 gives f =  ar e/z2(S). Now let S be arbitrary and let '" 
denote 'going modulo N '  where N is the nil radical of S. Then 
f'elz2(S'[T,T-l])=lz2(S'). Let aeU(S) such that a'=f' .  Then a2=(l+y) 2 for 
some y e N ,  since 2 e  U(S). Thus [fa-l(1 +y) ] '=  1' and [fa-l(1 +y)]2= 1 so that 
there exists z e N  with fa-l(1 +y)= 1 +z. The equation (1 +z) 2= 1 implies z=O. 
Hence fe//2(S).  

Lemma 2.2. With notation as above, let q be a quadratic space over A such that 
q®a A and q®a A / i f  are extended from R and R / i f  respectively. Then q is stably 
extended from R. 

Proof. Let ~ : q®a  A -~q®A A and u/" q®n A/@-~q®a A/@ be isometries over 
and A / i f  respectively such that ~=~=Id .  Then ~p*-lC/*eOA/¢(q), where '*' 
denotes the extensions to A/@. Hence ~p*-l~,*.l. Id e O2/¢(q ± h). Since/~/@ is a 
product of fields modulo its radical, by Lemma 1.3 there exist i/eEOA/~.(q, h) and 
reO~/¢(h) such that ¢*-l~u*.l. Id=r/z. Since rTf=Id and d e t 0 = l  we have 
det f =  1. Since ft2(~/if  ) =/z2(/~/if), we have det r = det f =  1. Thus r = ru for some 
u e U(A/@). Using the Cartesian square (2) and Milnor's result [1, Ch. IX, 5.1] we 
obtain a rank-1 projective A-module P corresponding to the triple (4, u,A/@). 
Since A-*A/ i f  is surjective we can lift r/ to EOA(q,h) and alter fp suitably to 
assume that ~p,-i ~ ,  ± Id = z u. Thus the triples (q ± h, Id _l_ ru, q ± h) and 
(~ ± h, Id, ~ ± h) are equivalent and hence q ± H(P) ~ ~ ± h. 

We now analyse the structure of the Witt ring W(R[T, T -1 ]). For this we con- 
sider the group K =  Ker(W(R)---) W(/~) G W(R/~)), the map being the diagonal map 
induced by the natural maps R ~ / ~  and R ~ R / ~  The class of any quadratic space 
in the Witt ring will be denoted by [.]. We first remark that given [q] e K, there are 
isometries 

: (q ± h)®R R~(H(P) ± h)®R R 
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over /~  and 

q/ : (q ± h)(~R R / ~  ~(H(P)  ± h)®R R / ~  

over R / ~  for some P c  ~(R) .  Then ~p .~ , - i  e OR/ei(H(P) ± h), ' . '  denoting the ex- 
tensions t o /~ /~ .  Since R / ~  is a product  of fields modulo its radical, by [2, Theorem 
3.3] there exist r /e  EO~/~(H(P), h) and r e O~/¢(h) such that ~p*q/*-~ = r/r. We can 
lift r/ to an element of EO~(H(P),h) and alter q~ suitably to assume that 
~p . ~ . - i  = r. Using the Cartesian square (1) we get a rank 2 quadratic space q0 over 
R which corresponds to the triple (h, r ,h).  Thus q ± h ~ H ( P ) ±  qo and hence, 
[q] = [q0] in W(R). Thus any element o f  K has a representative of  the form [q0]. 
The trivial element of  K corresponds to the class of  (h, zu, h) for any u e U(R/ff). 

Using this representation we now prove 

Proposition 2.3. With the notation as above, the map F:K-~I I2(R/~) / ( l I2 (R  ) • 

/z2(R/~)) defined by F([q]) = det r is a group isomorphism, where q corresponds to 
the triple (h, r ,h) and bar denotes the class in 112(R/~)(blE(R)-(llE(R/~)). 

Proof. F is well-defined, since z uniquely defines [q] up to equivalence. Let 
[q0], [q0] e K be defined by the class of  the triples (h, r ,h)  and ( h , r ' h ) .  Then 
r ±  r' e OR/~(h ± h) and hence there exist rf' eEOR/~(h,h) and r " ~  Og/~(h) such 
that  r i r '  = ~"r". Then 

F([qo ] + [q6]) = F([q0 ± q~]) = det r"  

= det r .  det r '  =F([qo]). F([q6]) 

which shows that F is a homomorphism.  
Let [q] e K be given by the class of  the triple (h, r ,h)  and F([q])=  1. Then 

det r=geO t for ue/z2(/~), oe /z~(R/~) .  Since 2 is a unit i n /~  and R / ~ ,  the maps 
O~(h)----~/z2(/~ ) and OR/~(h)--./aE(R/~) are surjective. Thus we can lift u and o 
and alter r suitably to assume that  (h, r, h) is equivalent to (h, ru,, h) for some 
u '  e g2(/~/~).  Thus [q] = 0, showing that  F is injective. 

Let UegE(R/~) .  Let reOt~/~(h) s.t. det r = u .  Then (h,z,h) defines an element 
[q] e K such that F( [q] )=  ~ and hence F is surjective. 

We next compute K for two rings. 

Example 1 [7, Proposition 4.5]. R = ]c[t 2, t3], k is a field of  characteristic :g2. Then 
=k[ t ] ,  I =  (t 2, t3), R / ~ k ,  g /~ '~k[ t ] / ( t2 ) ,  /tE(R/(~)= { _+ 1} =/z2(/~/l~)= 

g2(/~). Thus K ~ { 1 }. 

Example 2. Let R = C [ X ,  Y ] / ( y 2 - x 2 - x 3 ) .  Then R=C[y/x]  where x and y 
denote the classes of  X and Y modulo ( y 2 - x E - x 3 )  and ~ = ( x , y ) .  Thus 
R / ~ C  and R / ~ C [ y / x ] / ( ( y / x ) 2 - 1 )  so that btE(/~)=k/2(R/~)={-I-1 } and 
/z2(/~/@) = { _+ l, +_y/x}. Thus K-~Z/2Z .  
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We now use K to prove the following 

T h e o r e m  2.4. There is an exact sequence o f  groups 

O ~ K  f-~ W(R)(~ W(R) g--~ W(R[T, T -l))-.,O 

where f([q])=([q], [q]) and g([ql], [q2]) = [ql] - [Tq2] for  [q] e K  and [ql], [q2] 
W(R). 

P r o o f .  Clearly f and g are well-defined and f is injective. To prove that g is surjec- 
tive we consider [q] e W(R[T, T- l ] )  where the representative q is of  rank _>3 and 
has Witt index _> 1. Since g is a product of  Dedekind domains by [5, Theorem 3.5] 
we have [q®A/ ] ]  = [q0 3- Tq~] in W(A) for some quadratic spaces q~ and q~ over/~. 
Since R / ~  is a product of  fields modulo its radical, by [5, Lemma 1.2] there exist 
quadratic spaces q~',q~" over R / ~  such  that [q®A A / ~ ]  = [q'~3- Tq'(] in W(A/~) .  
Thus 

[(q~± Tq~)(~2 fl/ff,  l=[(q~" 3_ Tq[)®A/¢ A/~.] 

in W(.4/@). Now there exist integers lo, ll,mo, m I _>0 and anisotropic quadratic 
spaces q ~ ' , - * "  " * '  -*"  q0 , ,~l ,  ql o v e r / ~ / ~  such that 

q~(~z t .7 t /~q~ '  3_h t°, q ~ ' ® A / ~ A / ~ q ~ "  3_h m°, 

q[®.~.4/~-~q~" ± h  t~, q~'(~A/~ ff4/~--%q~" 3-h m'. 

Since /~ / f f  is a product of  fields modulo its radical, by [5, Lemma 1.3] we have 
, t  _ , t  ~ _ , v t  qo 3- Tq~'--*q~"3_ Tq~". Thus q0 - ' q0  and q~'-~q~" over g / ~ .  Hence there are 

integers i0, il, J0, Jl _> 0 and isometries 

rio" (qo 3_ hi° ) (~g R / ~  --% (q~' 3_ hJ° ) ~ R / ~  R / ~  

and 
ill" (ql 3_ hi' )®R R/~ -~ (q~' 3_ h j' )®R/¢ R/~ 

over R/~. Let qo, ql be quadratic spaces over R defined by the triples (q~.L h i°, 
n "il " " hjl rio, qo 3- h j°) and (q~ 3- n , Pl, ql 3- ) respectively and obtained f rom the Cartesian 

square (1). Let [P] = [q] - [q0] - [Tql] in W(R[T, T- l ] ) .  Then [p] is trivial in W(A) 
and W(A/~) .  Thus p ® . 4  and p ® A / ~  are extended f rom/~  and R / ~  respectively. 
Hence, by Lemma 2.2, p is stably extended from R. Thus [p] = [p'] ~ W(R). Thus 

[q] = [q0 _t.p 3_ Tql] = g(tq0 3_ Pq, [ -q l ] ) .  

To show that  K e r g = i m f  consider ( [q l ] , [q2])~Kerg-  Then [ql] = [Tq2] and 
hence [ql] = [ql] = [7~q2] - [q2] = [q], say, in W(R). Since R is a product of  
Dedekind domains,  we may assume/~  is a domain with quotient field k. Then 
[ql=[Tq] in W(k[T,T-1]) so that q3-hr '~Tq3-h r over k[T,T  -l] for some r > 0 .  
Thus, by [5, Lemma 1.3], q ~  Tq. Hence q is hyperbolic over k. Since W(/~)--* W(k) 
is injective, q®R R is hyperbolic over R. Similarly, since [q] = [Tq] over A / ~  and 
R / ~  is a product  of  fields modulo its radical, q®R R / ~  is hyperbolic over R/~ .  
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Thus [q[ e K  and f ( [q ] )=  ( [q l ] ,  [q2]), SO that  K e r g _  Imf .  Also, if [q] eK,  then q is 
stably hyperbolic over R and R / q ,  so that  Tq is stably hyperbolic over A and A / ~ .  
Thus, by Lemma 2.2, [Tq] = [Tq] = [q] and hence gf([q]) = [q] - [Tq] = 0, so that  
Imfc_ Ker g. 

Remark.  In the course of  the p roof  of the above theorem we have proved that given 
a quadratic space q over R[T, T - l  ] there exist quadratic spaces q0 and ql over R 
such that  [q] = [q03- Tql] in W(R[~ T-I]) .  

3. Cancellation of quadratic spaces over R[T, T -l]  

Proposition 3.1. Let R be a Dedekind domain and q be a quadratic space over 
R[T, T - l  ] o f  Witt index >_2. Then q is cancellative. 

Proof .  It is enough to prove that if q' is a quadratic space over R[T, T -1 ] such that 

q 3_ h-~ q ' ±  h, then q-~ q'. By [5, Theorem 3.5], q-~ ql 3_ Tq23_ h 3_ H(Q) where ql 
and q2 are quadratic spaces over R and Q is a rank-1 projective R-module. Thus 
q'  is stably isometric to (ql 3_ h) 3_ Tq2 3_ H(Q) so that  q'-~(ql 3_ h) 3- Tq2 3- H(Q') 
where Q' is a rank-1 projective R-module [5, p roof  of  Theorem 3.5]. Since Witt in- 
dex ~ >_ 2 and dim R = 1 and 

ql 3- q2 -l- h -k H(Q') 3- h-~ ql 3- q2 3_ h 3_ H(Q) 3_ h 

we have, by [8, Theorem 7.2.], h 3-H(Q')-V~h .I.H(Q). Thus q'-~q. 

Using this proposit ion we prove 

Theorem 3.2. Let R be a ring o f  dimension one with finite normalisation and in 
which 2 is invertible. Let q be a quadratic space over R[T, T -l ] with Witt index 
>_ 2. Then q is cancellative. 

Proof .  We use the notat ion of  Section 2. It is enough to prove that if q '  is a 
quadratic space over A such that  q 3_h-~q'3_ h, then q-~q'. Since Witt index q>- 2 
there exists a rank-1 projective A-module P and a quadratic space q0 over A such 
that  q = qo 3_ H(P) 3_ h. Since/~ is a product of  Dedekind domains, by Proposi t ion 
3.1 we have an isometry 

(0 
q 'QA f t  "--~ (qo 3_ H ( P )  3_ h ) Q  A ,71. 

Since dim A / ~  = 1, by [8, Theorem 7.2] we have an isometry 

q'(~A A / ~  - ,  (qo 3- H(P) 3- h)(~ A A / ~  

thus ~,*~0"-1 ~ O~/¢(qo ± H(P) 3- h) where ' , '  denotes the extension to A/(~. Since 



322 P. Sinclair 

R / ~  is a product of  fields modulo its radical, by Lemma 1.3 we have ~,*tp*-I = rr/ 
for  some reOA/g(h), rleEOA/~(qo±H(P),h). Since A ~ A / ~  is a surjection, we 
can lift r / t o  EOA(qo±H(P),h) and alter ~ suitably to assume that  ~*~u*-1=r.  
Using the Cartesian square (2) we get a rank-2 quadratic space q2 over A which cor- 
responds to the triple (h, r, h). Then, since the triples (q;  Id, q ' )  and (q0 ± H(P) ± h, 
Id ± r, qo ± H(P) ± h) are equivalent, we get q'-~ qo ± H(P) ± q2. To complete the 
p roof  we show that  H(P) ± q2-~H(P) _1_ h. Since dim R = 1 and q and q '  are stably 
isometric, by [8, Theorem 7.2], 0 ' -~#.  Hence we have an isometry H(/5) ± 02 - '  
H (P )  ± h over R. Since R is a product o f  Dedekind domains,  Pic R = Pic A.  Also 
q2@A i t - ~  h. Thus we have isometries 

and 
~01 : (H(P) ± q2)(~A A-:,(H(P) ± #2)@R A 

tp 2 : (H(P) ± h)®A A-n(H(p) ± h)@nA 

over A such that  01 = Id = ($2, and hence we get an isometry 

~0' = ~0210~01 : (H(P) _L q2)(~A A -~(H(P) ± h)® A A 

such that 0 ' =  0. Similarly, since dim R / ~  = 0, we have an isometry 

g/': (H(P) ± q2)@A A / ~  ~ (H(P) ± h)® A A / ~  

such that 0 ' = 0 .  Then tp'*v/*-1~OA/e(H(P)±h). By Lemma 1.3 there exist 
rfeEOA/~(H(P),h) and r'eOA/~(h ) such that ~ , .~ , , . - i  =r / ' r ' .  Hence 0 ' ? ' = I d  so 
that  f '  e EO~/~(H(P), h). Thus, by Lemma 1.1, f ' =  Zu0 ~ for some Uo ~ U(R/~). 
Since / .12(A/~) ' - / . lE(g /~  ) w e  have d e t r ' = d e t f ' = l  and hence r ' = r u  for some 
u ~ U(~/~) with ~ =  u 2. We can lift r/' to an element of  EO,~(H(P), h) and alter 
~ '  suitably to assume ~ ' * ~ " * - l = r  u. Since q ± h - ~ q ' ± h  and Witt index 
H(P) ± h ± h_> 2, by [8, Theorem 7.2] we have (H(P) ± h) ± h ~ (H(P) .i. q2) ± h so 
that  the triples ((H(P) ± h) ± h, Id 3. Id, (H(P) ± h) ± h) and ((H(P) ± h) ± h, ru ± 
Id, (H(P) _L h) ± h) are equivalent. Hence there exist a e OA(q) and f ie OA/~.(q) 
such that a*fl *-I = ru ± Id. Thus, applying the spinor norm homomorphism [1, 
3.3] we get 

SN(a*)SN(fl *-l ) = SN(ru ± Id) = (u) [1, 4.4.1]. 

We have exact sequences 

, U ( A ) / U ( A )  2 
01 

0 , Disc A ' 2Pic A * 0 

.I 
0 ' U ( / ~ ) / / U ( / ~ )  2 , D i s c  R 02 ' 2Pic/~ ' 0 

connected by the natural  inclusions. Since SN(ct*)= SN(a )e  Disc A,  there exists 
y e D i s c R  such that  02(y)=Ol(SN(a)) and hence there exists o e U(,4) such that 
o = y - l ® S N ( a )  modulo U(A) 2. Thus SN(a*)=  tKy') , where y ' e  U(R/ff), since Pic 
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, 4 / ~ = 0 .  Also SN( f l* - I )=SN( ,8 )  -1 = ( a )  for some ae U(A/~), since P i c A / ~ = 0 .  
Thus, over A / ~ ,  (u)=(o)(y')(a) .  Since Disc,4/~-~U(.A/~)/U(.,4/~) 2, there 
exists b eU(.,4/~) such that u = oy'ab 2. Thus u2= /2=  6y'ti6 2 and hence u = (ot~ -1 ) 
(ad-1)(u2bEb-2). By Lemma 1.2, Idlzu2bEb-EEEO~/~(H(P),h), and hence can 

be lifted to EO,~(H(P),h). Also off -1 e U(A) and ad -1 ~ U(A/~). Thus we can alter 
~p' and ~,' suitably to obtain tp'*~ '*-1 =Id .  Hence H(P) 3_ qE-~H(P) 3_ h and q'-~q. 

References 

[1] H. Bass, Algebraic K-theory (Benjamin, New York, 1968). 
[2] M. Eichler, Quadratische Formen und Orthogonale Gruppen (Springer, Berlin, 1952). 
[3] M. Karoubi, Localisation de formes quadratiques II, Ann. Sci. I~cole Norm. Sup. (4) 8 (1975) 

99-155. 
[4] R. parimala, Quadratic forms over polynomial rings over Dedekind domains, Amer. J. Math. 103 

(1981) 289-296. 
[5] R. Parimala, Quadratic forms over Laurent extensions of Dedekind domains, Trans. Amer. Math. 

Soc. 277 (1973) 569-578. 
[6] R. Parimala and P. Sinclair, Quadratic forms over polynomial extensions of rings of dimension 1, 

J. Pure Appl. Algebra 24 (1982) 293-302. 
[7] R. Parimala and R. Sridharan, Quadratic forms over rings of dimension 1, Comm. Math. Helv. 55 

(1980) 634-644. 
[8] A. Roy, Cancellation of quadratic forms over commutative rings, J. Algebra 10 (1968) 286-298. 


