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1. Introduction

Let R be a commutative Noetherian ring in which 2 is invertible. In [3] Karoubi
has proved that if R is a regular ring, then W(R[T, T~'1)> W(R)® W(R) where W
denotes the Witt ring functor. In this paper we show that if R is a ring of dimension
one with finite normalisation R, then for any quadratic space g over R[T,T']
there exist quadratic spaces qq, g; over R such that [g] =[g, L Tq,], [-] denoting the
equivalence class in W(R[T, T~!]). Using this, in Theorem 2.4 we prove that

0-K—-WR®WR)»WRI[T. T ')—-0

is an exact sequence of groups where K is the kernel of the canonical map
W(R)— W(R)® W(R/B), € being the conductor of R in R. We also prove
(Theorem 3.2) that quadratic spaces over R[T,7T~!] of Witt index =2 are
cancellative. This is an improvement of the general cancellation theorem [8,
Theorem 7.2] for this particular case. The proof of these results uses the structure
of the orthogonal group of isotropic quadratic spaces over k[7, T~'], where k is a
field, which is given in Lemma 1.3.

In this paper we assume that 2 is invertible in all rings considered. Also for any
ring R, by 2(R) we will mean the class of all finitely generated projective R-modules
and u,(R)={xeR|x*=1}.

I would like to thank Dr. Parimala for her interest in this work.

1. Orthogonal transformations
In this section, we include a few lemmas which are needed in this paper.
Let R be a commutative ring. Let (Q, g) be a quadratic space over R, h be the

hyperbolic plane (% }) and let Re@® Rf be the underlying module of the form & with
0
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(e, f)Y=1, (e,e)=0=(f,f). For we Q the elements E,, E}e O(q L h) are defined
as follows [8, p. 291]:

E, (2)=z+{(z,w)e, ze(Q,

E,e)=e, E, (f)=—-w—gWe+f
and
EX)=z+{(zW)f, z€Q,

Exe)=—w—qgW)f+e,  ENf)=f.

Let EOg(q,h) denote the subgroup of Og(gLh) generated by the set
{E,,E¥|we Q}. Recall [4] that Og(h) normalises EOg(g, h). Let Gg(g, h) denote
the subgroup EOg(q, h) - Og(h) of Og(g 1 h). Let U(R) denote the set of units of R.
For any u in U(R) let 7, denote the element (% ,21) of Og(h).

Lemma 1.1. Let k be a field of characteristic +2 and q be a quadratic space over
k. If, for ack* 1,€ EOi(q,h), then a=b* where bek*.

Proof. See [2, p. 27, Theorem 4.6].

Lemma 1.2. Let R be a domain in which 2 is a unit. Let (Q, q) be a quadratic space
over R which represents a unit. Then, for any unit u in R, 1d L 7,2€ EOg(q, h).

Proof. Let we Q such that g(w) € U(R). Let se R such that 1 —sg(w)=u"". Then,
we have [2, p. 16, 3.16]

T2 = Etsuw"E—qu:wEW'
Thus 7,2€ EOg(q, h).

Lemma 1.3. Let k be a field of characteristic +2 and (Q, q) a quadratic space over
R=k[X, X ']. Then Og(q L h)=Gg(q, h).

Proof. The proof is by induction on rank q. If rank g=0, then Og(g 1 k) = Og(h).
We assume rank g=n>0. By [5, Lemma 1.2] Q has an orthogonal basis
{e(,...,e,} with g(e)=A; where A;ek* or A;=u; X, u;€k*. As in the proof of
[6, Lemma 1.1] it follows that Og(q) C Gr(q,h). Let a€ Og(q L h) with a(f)=
¢+ae+bf, where £=Y a;e;, a,a,beR, {ee)=0=(ff) and (e, f)=1. In case
E=0or £+0 and a or b is a unit in R, we see that a € Gg(g, h), as in the proof of
[6, Lemma 1.1]. Suppose that £+#0 and neither a nor b is a unit. We induct on
min(d(a), d(b)) where d denotes the Euclidean function on R induced by the degree
function on k[X]. Consider the ideal bR. There exists p € k[X], with 1+ Xp € bR.
Let b’eR be such that 1+ Xp=>bb'. For each i=1,...,n there are g; e k[X] and
ci€R with a;=g;+c;(1+Xp)=g;+c;bb’. Then

Ey peec@(f)=1X gie;i+ <a— b’ Y aicid;~+bb* Y, Ciz'li)e'*‘ bf



Stable structure and cancellation of quadratic spaces 317

and g;e k[X] for all i=1,...,n. Thus, we may assume

a(f)=Y a;e;+ae+bf and q;ek[X] fori=1,...,n

Assume d(a)<d(b), the proof being similar if d(b)<d(a). If a=a’X® with
(@', X)=1 and a’e k[X], then

oal(f)=Y ae+a’ X e+ bXf

and d(@)=dega’=d(@’X°*%). Therefore we may also assume that a(f)=
Y, a;e;+ae+ bf with a; ek[X], a=a'X'ek[X], I>0, (@,X)=1, a’ek[X]. For
eachi=1,...,n, given q; and a’ there are /; and m; in k[X] with ¢;=a’l;+ m;, m;=0
or deg m; <dega =d(a). Thus a; =aq; + m; with q,eR and m; € k[X], d(m;)<d(a).
Let w=-7Y g,e;. Then

E* ca(f)=(E+aw)+ae+b"f where b”=b—aq(w)— (& w).
Since g(a(f))=0, we have Zia,~2/1,~+2ab=0. Hence

Z m2; = —a’X’(2b+2 Y gim;d;i+ Z aq,z,l,->.
We choose />0 so that X| Y. m?A;. If max;{degm?A;} is attained at J, we have
d<2 m,—2/1i> sdeg(Z m,-2/1,-) —1=<deg(m/A;) -1

<2deg m;<2dega’=2da).

Thus d(}, m,-z/l,-) <2d(a) and d(qg(¢ +aw))<2d(a). Since q(E*, a(f))=0, we have
q(¢ + aw)= —2ab” and d(b”) < d(a). Thus we have reduced min(d(a), d(b)) by apply-
ing elements of Gg(q, h) to a. During this procedure the first » components of a(f)
remain polynomials, and hence, repeating the above process only involves applying
elements of Og(h) and so we continue decreasing min(d(a), d(b)) till it becomes
zero.

Remark 1.4. Let k be a field with characteristic different from 2 and g be a
diagonisable space over R=k[X, 1/f], fe k[X]. Then it can be similarly proved that

Ogr(q L h)=Gr(g, h).

2. Stable structure of quadratic spaces over R[7,T"!]

Let R be a reduced ring with finite normalisation R and let € be the conductor
of R in R. Let A,A,A/G, A/C denote the Laurent extensions R[T,7T 1,
R[T, T™"1, (R/®)[T, T "1, (R/G)IT, T~'] respectively. Then we have the Cartesian
squares
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R——R A

N

4] and )

R/@—R/€ A/€ A/€

By ‘~’ we will denote ‘going modulo (7-1)’.

Lemma 2.1. Let S be a ring in which 2 is invertible. Then

1w(SIT, T™'1) = pa(S).

Proof. Let f=T"5(ay+a,T+--+a,T")eu,(S[T, T~']). Suppose first that S is
reduced. The equation f2=1 gives f=a, € 4,(S). Now let S be arbitrary and let "
denote ‘going modulo N’ where N is the nil radical of S. Then
feu(S'IT, T ' =u,(S’). Let acU(S) such that a’=f". Then a*=(1+y)* for
some yeN, since 2€ U(S). Thus [fa~'(1+y)]'=1" and [fa~'(1+y)]’>=1 so that
there exists ze N with fa~'(1+y)=1+z. The equation (1+2)*>=1 implies z=0.
Hence fe u,(S).

Lemma 2.2. With notation as above, let q be a quadratic space over A such that
q®4 A and q® 4 A/ € are extended from R and R/ G respectively. Then q is stably
extended from R.

Proof. Let 9: q®R®4A>GR A and y: qR 4 A/C = §®,4 A/C be isometries over A
and A/G respectively such that g=y=Id. Then ¢* 'y*e0z,:(q), where ‘¥
denotes the extensions to A/G. Hence ¢* 'y* L 1d € Oz,5(q L h). Since R/C is a
product of fields modulo its radical, by Lemma 1.3 there exist #€ EOz,(g, k) and
1€04,6(h) such that ¢* 'y*1LId=nt. Since ff=Id and det7j=1 we have
det 7= 1. Since u,(A/€)=u,(R/€), we have det t=det ¥=1. Thus 7=1, for some
u € U(A/Q). Using the Cartesian square (2) and Milnor’s result [1, Ch. IX, 5.1] we
obtain a rank-1 projective A-module P corresponding to the triple (4,u, A/G).
Since A—»A/C is surjective we can lift # to EOz(q,h) and alter ¢ suitably to
assume that ¢* 'y*LlId=t,. Thus the triples (gLhlIdLlt,qLh) and
(G L h1d,§ L h) are equivalent and hence g L H(P)=§ 1 h.

We now analyse the structure of the Witt ring W(R[T, T-'1). For this we con-
sider the group K =Ker(W(R)— W(R)® W(R/E)), the map being the diagonal map
induced by the natural maps R— R and R—R/€. The class of any quadratic space
in the Witt ring will be denoted by [-]. We first remark that given [g] € K, there are
ilsometries

9:(qLh)®r R (H(P) L)@r R
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over R and
w:(@Lh)X®rR/C>(H(P) Lh)@rR/EC

over R/Q for some Pe #(R). Then p*y* '€ Or,g(H(P) L h), ‘#’ denoting the ex-
tensions to R/€. Since R/€ is a product of fields modulo its radical, by [2, Theorem
3.3] there exist 7 € EOg,c(H(P), h) and 7€ Og,s(h) such that p*y* ' =n7. We can
lift # to an element of EOgR(H(P),h) and alter ¢ suitably to assume that
¢ *w* ! = 1. Using the Cartesian square (1) we get a rank 2 quadratic space g, over
R which corresponds to the triple (h,7,h). Thus g L A= H(P) L q, and hence,
[q] =1q] in W(R). Thus any element of K has a representative of the form [qol.
The trivial element of K corresponds to the class of (A, 1,,k) for any ue U(R/G).
Using this representation we now prove

Proposition 2.3. With the notation as above, the map F:K—u,(R/€)/(uy(R)-
U, (R/Q)) defined by F([q])=det t is a group isomorphism, where q corresponds to
the triple (h,t,h) and bar denotes the class in u,(R/C) (u,(R)- (uy(R/§)).

Proof. F is well-defined, since 7 uniquely defines [g] up to equivalence. Let
[9o], [gol € K be defined by the class of the triples (h,7,4) and (h,t',h). Then
71 7'€Og,s(h L h) and hence there exist n”€ EOg,s(h,h) and 1”€ Og,s(h) such
that 7L v"=n"t". Then

F((go) + [q6]) =F(lgo L go)) =det 7"
=det 7 det t'=F(Igo]) - F(Igo))

which shows that F is a homomorphism.

Let [gleK be given by the class of the triple (h,7,A) and F([g])=1. Then
det t=uv for ueu,(R), veu,(R/€). Since 2 is a unit in R and R/E, the maps
Og(h) ije—tmz(l?) and OR/@(h)—e—tmz(R/ @) are surjective. Thus we can lift ¥ and v
and alter 7 suitably to assume that (h,7, k) is equivalent to (h,t,,h) for some
u’e u,(R/Q). Thus [g] =0, showing that F is injective.

Let ueu,(R/€). Let 1€ Og/(h) s.t. det t=u. Then (h, 7, ) defines an element
[q] € K such that F([g])=4 and hence F is surjective.

We next compute K for two rings.

Example 1 [7, Proposition 4.5]. R =k[t? #°], k is a field of characteristic #2. Then
R=k[t, I=¢3 3y, R/€>k, R/CSk[t]1/{t?), u(R/C)={x1}=u(R/€)=
U>(R). Thus K = {1}.

Example 2. Let R=C[X, Y]/ Y?~X?-X?). Then R=C[y/x] where x and y
denote the classes of X and ¥ modulo ¢(Y?-X2-X3) and € =(x,y). Thus
R/G>C and R/G>C[y/x1/{(y/x)*—1) so that u(R)=p,(R/€)={+1} and
u,(R/G)={+1,+y/x}. Thus K >Z/27.
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We now use X to prove the following
Theorem 2.4. There is an exact sequence of groups

O—*K—f—> W({R)D W(R)—g—> W(RIT, T~ ')—0

where f(Iq])=(ql,[q)) and g(lq,],(q:)) =1q,]1-[Tq,] for [qleK and [q,],]q,]€
W(R).

Proof. Clearly f and g are well-defined and f is injective. To prove that g is surjec-
tive we consider [g] € W(R[T, T~!]) where the representative g is of rank =3 and
has Witt index = 1. Since R is a product of Dedekind domains by [S, Theorem 3.5]
we have [g® 4 Al =[qy L Tq;] in W(A) for some quadratic spaces g, and g; over R.
Since R/@ is a product of fields modulo its radical, by [5, Lemma 1.2] there exist
quadratic spaces gg,q; over R/Q such that [g®4 A/C]=[gyL Tq;] in W(A/G).
Thus
[(gs L Tq})®4 A/C1=1(gf L Tq])® 45 A/C]

in W(A/C). Now there exist integers /y,/;,my, m;=0 and anisotropic quadratic
spaces q¢,as",q1,q1" over R/G such that

qQR;A/C>qd LK,  qi®4,cA/CS3qd" LA™,
qi®1A/C3qf Lh",  qi®45A/C>qF Lh™.

Since R/€ is a product of fields modulo its radical, by [5, Lemma 1.3] we have
qay’ L Tq}' > q¢” L Tqy. Thus g3’ q¢” and g q{*” over R/G. Hence there are
integers iy, i}, jo,./1 =0 and isometries

Bo:(goL H)®g R/E> (g L W°)Rp,s R/C
and
Bi: (g LA")®gR/C>(qf LI )Qrc R/C

over R/G. Let g,,q, be quadratic spaces over R defined by the triples (gL 4
Bo»q§ L h°) and (q; L A", B1,q; L h/') respectively and obtained from the Cartesian
square (1). Let [P1=[q] - [go] — [Tq,] in W(R[T, T"']). Then [p] is trivial in W(4)
and W(A/Q). Thus p®A and p®A/¢ are extended from R and R/G respectively.
Hence, by Lemma 2.2, p is stably extended from R. Thus [p]=[p] € W(R). Thus

[gl=[g0L P L Tq1=g(go L P, [-qi]).

To show that Ker g=im f consider ([q,],[g;])eKer g. Then [q;]1=[Tq,] and
hence [q,]1=1[d,1=[Tq;1=[q.]=I[q], say, in W(R). Since R is a product of
Dedekind domains, we may assume R is a domain with quotient field k. Then
[q] =[Tql in W(k[T,T~']) so that g L k"= Tq L k" over k[T,T~'] for some r>0.
Thus, by [5, Lemma 1.3], ¢ Tq. Hence g is hyperbolic over k. Since W(R)— W (k)
is injective, g®g R is hyperbolic over R. Similarly, since [¢g] =[Tq] over A/€ and
R/G is a product of fields modulo its radical, g&®g R/€ is hyperbolic over R/€.
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Thus [g[€ K and f([g]) = (Ig,], [g;]), so that Ker g CIm f. Also, if [g] € K, then q is
stably hyperbolic over R and R/, so that Tq is stably hyperbolic over 4 and A/G.

Thus, by Lemma 2.2, [Tq}=[Tq]=I[q] and hence gf([q])=[g] - [Tq] =0, so that
Im fc Ker g.

Remark. In the course of the proof of the above theorem we have proved that given
a quadratic space g over R[T, T~'] there exist quadratic spaces g and g, over R
such that [g]=[go L Tq,] in W(RI[T, T")).

3. Cancellation of quadratic spaces over R[T, T ']

Proposition 3.1. Let R be a Dedekind domain and q be a quadratic space over
R[T, T '] of Witt index =2. Then q is cancellative.

Proof. It is enough to prove that if ¢’ is a quadratic space over R[T, T~'] such that
qLh>q’'Llh, then g=q'. By [5, Theorem 3.5], g=¢q, L Tq, L h L H(Q) where g,
and g, are quadratic spaces over R and Q is a rank-1 projective R-module. Thus
q’ is stably isometric to (g; L h) L Tq, L H(Q) so that ¢'>(q, L h) L Tq, L H(Q’)
where Q' is a rank-1 projective R-module [5, proof of Theorem 3.5]. Since Witt in-
dex §=2 and dim R=1 and

G1Lq Lh L HQ)YLh>q Lg, LhLHQ)Lh
we have, by [8, Theorem 7.2.], h L H(Q')>h L H(Q). Thus g’ >gq.

Using this proposition we prove

Theorem 3.2. Let R be a ring of dimension one with finite normalisation and in
which 2 is invertible. Let q be a quadratic space over R[T, T~ with Witt index
=2. Then q is cancellative.

Proof. We use the notation of Section 2. It is enough to prove that if g’ is a
quadratic space over 4 such that g L h=¢q’ L h, then ¢=¢q’. Since Witt index g=2
there exists a rank-1 projective A-module P and a quadratic space g, over A4 such
that g =g, L H(P) L h. Since R is a product of Dedekind domains, by Proposition
3.1 we have an isometry
7
9 ®4A—(qo L HP) LhH®, A.

Since dim A/€ =1, by [8, Theorem 7.2] we have an isometry

v
q Ry A/C€—(qy LH(P) L) R4 A/C

thus w*¢* '€ Oz,5(qo L H(P) L h) where ‘*’ denotes the extension to A/E. Since
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R/G is a product of fields modulo its radical, by Lemma 1.3 we have y*o* =1
for some t1€0g,5(h), n€ EO4,5(qo L H(P),h). Since A—A/€ is a surjection, we
can lift n to EOz(qo L H(P),h) and alter ¢ suitably to assume that ¢*y*~!=1.
Using the Cartesian square (2) we get a rank-2 quadratic space g, over A which cor-
responds to the triple (A, 7, k). Then, since the triples (g’,1d,q’) and (g, L H(P) L A,
Id L 7, gy L H(P) 1 h) are equivalent, we get ¢’ q, L H(P) 1 q,. To complete the
proof we show that H(P) L g,= H(P) L h. Since dim R=1 and q and g’ are stably
isometric, by [8, Theorem 7.2], §’>§. Hence we have an isometry H(P) 1L §,—
H(P) 1L h over R. Since R is a product of Dedekind domains, Pic R = Pic A. Also

q,®4 A= h. Thus we have isometries

01:(HP) L q)®4 A>(H(P) L §)@r A
and
02: (H(P) Lh)®4 A= (HP) L)@y A

over A such that @ =Id=@,, and hence we get an isometry
9’ =05'0p:(HP) L g:)R4 ASHP) LH)®4 A

such that ¢’=46. Similarly, since dim R/€ =0, we have an isometry
y  (HP)Lq)®4 A/C>HP) L) ®4 A/C

such that y’=6. Then ¢"*w'*'€0;,s(H(P) Lh). By Lemma 1.3 there exist
n’ € EOz,c(H(P),h) and 7’€ O4,5(h) such that ¢"*y"* '=pn’t’. Hence /’#'=1d so
that ¥ € EOg,s(H(P),h). Thus, by Lemma 1.1, ¥ =1, for some uye UR/G).
Since u,(A/€)=u,(R/€) we have dett'=det ’=1 and hence 7'=17, for some
ue UA/Q) with d=u?. We can lift #” to an element of EO;(H(P),h) and alter
@’ suitably to assume ¢ *y'*'=7,. Since gLh>q’Lh and Witt index
H(P)Lh L h=2, by [8, Theorem 7.2] we have (H(P) L h) L h=(H(P) L q,) L h so
that the triples (H(P) Lh) L h, Id L 1d, (H(P) L h) L h) and (H(P) Lh) L h, 7, L
Id, (H(P) L h) L h) are equivalent. Hence there exist a€ Oz(q) and fe O, 5(q)
such that a*B* !'=1, LId. Thus, applying the spinor norm homomorphism [1,
3.3] we get :

SN(a*)SN(B*~')=SN(z, 1 Id) = (u) [1,4.4.1].
We have exact sequences

- -~ _ (/]
0 UA)/UA)? Disc A ——

2PiC/i —0

Disc R———,Pic R 0

U(R)/U(R)*

0

connected by the natural inclusions. Since SN(a*)=SN(a) € Disc 4, there exists
y € Disc R such that 8,(y)=60,(SN(@)) and hence there exists ve U(4) such that
v=7"'®SN(a) modulo U(A)?. Thus SN(a*)=wy’) , where y’€ U(R/E), since Pic
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A/€=0. Also SN(B*~!)=SN(B)~! =<a) for some ae U(4/E), since Pic A/C=0.
Thus, over A/G, (u)=<(v){y’¥a). Since Disc A/€ > UA/C)/U(A/C)*, there
exists be U(A/Q) such that u=vy’ab?. Thus u§= ii=0y’ab* and hence u=(v5~1)
(@@~ ") uib?6~?). By Lemma 1.2, Id 1 7,2b*6"2€ EOz,5(H(P), h), and hence can
be lifted to EO7(H(P), h). Also vi~' € U(A) and ad~' € U(A/E). Thus we can alter
¢’ and '’ suitably to obtain ¢ *y'*~!=1d. Hence H(P) 1 g, H(P) L h and ¢’ >gq.
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