STABLE STRUCTURE AND CANCELLATION OF QUADRATIC SPACES OVER LAURENT EXTENSIONS OF RINGS OF DIMENSION ONE

Parvin SINCLAIR
Tata Institute of Fundamental Research, Bombay 400005 , India

Communicated by H. Bass
Received 1 November 1982
Revised 25 June 1984

1. Introduction

Let R be a commutative Noetherian ring in which 2 is invertible. In [3] Karoubi has proved that if R is a regular ring, then $W\left(R\left[T, T^{-1}\right]\right) \leadsto W(R) \oplus W(R)$ where W denotes the Witt ring functor. In this paper we show that if R is a ring of dimension one with finite normalisation \bar{R}, then for any quadratic space q over $R\left[T, T^{-1}\right]$ there exist quadratic spaces q_{0}, q_{1} over R such that $[q]=\left[q_{0} \perp T q_{1}\right]$, [•] denoting the equivalence class in $W\left(R\left[T, T^{-1}\right]\right.$). Using this, in Theorem 2.4 we prove that

$$
0 \rightarrow K \rightarrow W(R) \oplus W(R) \rightarrow W\left(R\left[T, T^{-1} \mathrm{~J}\right) \rightarrow 0\right.
$$

is an exact sequence of groups where K is the kernel of the canonical map $W(R) \rightarrow W(\bar{R}) \oplus W(R / \mathbb{C})$, © being the conductor of R in \bar{R}. We also prove (Theorem 3.2) that quadratic spaces over $R\left[T, T^{-1}\right]$ of Witt index ≥ 2 are cancellative. This is an improvement of the general cancellation theorem [8, Theorem 7.2] for this particular case. The proof of these results uses the structure of the orthogonal group of isotropic quadratic spaces over $k\left[T, T^{-1}\right]$, where k is a field, which is given in Lemma 1.3.

In this paper we assume that 2 is invertible in all rings considered. Also for any ring R, by $\mathscr{P}(R)$ we will mean the class of all finitely generated projective R-modules and $\mu_{2}(R)=\left\{x \in R \mid x^{2}=1\right\}$.

I would like to thank Dr. Parimala for her interest in this work.

1. Orthogonal transformations

In this section, we include a few lemmas which are needed in this paper.
Let R be a commutative ring. Let (Q, q) be a quadratic space over R, h be the hyperbolic plane $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ and let $\operatorname{Re} \oplus R f$ be the underlying module of the form h with
$\langle e, f\rangle=1,\langle e, e\rangle=0=\langle f, f\rangle$. For $w \in Q$ the elements $E_{w}, E_{w}^{*} \in O(q \perp h)$ are defined as follows [8, p. 291]:

$$
\begin{aligned}
& E_{w}(z)=z+\langle z, w\rangle e, \quad z \in Q \\
& E_{w}(e)=e, \quad E_{w}(f)=-w-q(w) e+f
\end{aligned}
$$

and

$$
\begin{aligned}
& E_{w}^{*}(z)=z+\langle z, w\rangle f, \quad z \in Q \\
& E_{w}^{*}(e)=-w-q(w) f+e, \quad E_{w}^{*}(f)=f
\end{aligned}
$$

Let $E O_{R}(q, h)$ denote the subgroup of $O_{R}(q \perp h)$ generated by the set $\left\{E_{w}, E_{w}^{*} \mid w \in Q\right\}$. Recall [4] that $O_{R}(h)$ normalises $E O_{R}(q, h)$. Let $G_{R}(q, h)$ denote the subgroup $E O_{R}(q, h) \cdot O_{R}(h)$ of $O_{R}(q \perp h)$. Let $U(R)$ denote the set of units of R. For any u in $U(R)$ let τ_{u} denote the element $\left(\begin{array}{cc}u & 0 \\ 0 & u^{-1}\end{array}\right)$ of $O_{R}(h)$.

Lemma 1.1. Let k be a field of characteristic $\neq 2$ and q be a quadratic space over k. If, for $a \in k^{*}, \tau_{a} \in E O_{k}(q, h)$, then $a=b^{2}$ where $b \in k^{*}$.

Proof. See [2, p. 27, Theorem 4.6].
Lemma 1.2. Let R be a domain in which 2 is a unit. Let (Q, q) be a quadratic space over R which represents a unit. Then, for any unit u in R, Id $\perp \tau_{u^{2}} \in E O_{R}(q, h)$.
Proof. Let $w \in Q$ such that $q(w) \in U(R)$. Let $s \in R$ such that $1-s q(w)=u^{-1}$. Then, we have [2, p. 16, 3.16]

$$
\tau_{u^{2}}=E_{-s u w^{-1}}^{*} E_{-u w} E_{s w}^{*} E_{w} .
$$

Thus $\tau_{u^{2}} \in E O_{R}(q, h)$.
Lemma 1.3. Let k be a field of characteristic $\neq 2$ and (Q, q) a quadratic space over $R=k\left[X, X^{-1}\right]$. Then $O_{R}(q \perp h)=G_{R}(q, h)$.

Proof. The proof is by induction on rank q. If rank $q=0$, then $O_{R}(q \perp h)=O_{R}(h)$. We assume $\operatorname{rank} q=n>0$. By [5, Lemma 1.2] Q has an orthogonal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ with $q\left(e_{i}\right)=\lambda_{i}$ where $\lambda_{i} \in k^{*}$ or $\lambda_{i}=\mu_{i} X, \mu_{i} \in k^{*}$. As in the proof of [6, Lemma 1.1] it follows that $O_{R}(q) \subseteq G_{R}(q, h)$. Let $\alpha \in O_{R}(q \perp h)$ with $\alpha(f)=$ $\xi+a e+b f$, where $\xi=\sum_{i} a_{i} e_{i}, a_{i}, a, b \in R,\langle e, e\rangle=0=\langle f, f\rangle$ and $\langle e, f\rangle=1$. In case $\xi=0$ or $\xi \neq 0$ and a or b is a unit in R, we see that $\alpha \in G_{R}(q, h)$, as in the proof of [6, Lemma 1.1]. Suppose that $\xi \neq 0$ and neither a nor b is a unit. We induct on $\min (d(a), d(b))$ where d denotes the Euclidean function on R induced by the degree function on $k[X]$. Consider the ideal $b R$. There exists $p \in k[X]$, with $1+X p \in b R$. Let $b^{\prime} \in R$ be such that $1+X p=b b^{\prime}$. For each $i=1, \ldots, n$ there are $g_{i} \in k[X]$ and $c_{i} \in R$ with $a_{i}=g_{i}+c_{i}(1+X p)=g_{i}+c_{i} b b^{\prime}$. Then

$$
E_{\sum_{i} b^{\prime} c_{i} e_{i}}^{\circ} \circ \alpha(f)=\sum_{i} g_{i} e_{i}+\left(a-b^{\prime} \sum_{i} a_{i} c_{i} \lambda_{i}-\frac{1}{2} b b^{\prime 2} \sum_{i} c_{i}^{2} \lambda_{i}\right) e+b f
$$

and $g_{i} \in k[X]$ for all $i=1, \ldots, n$. Thus, we may assume

$$
\alpha(f)=\sum_{i} a_{i} e_{i}+a e+b f \text { and } a_{i} \in k[X] \text { for } i=1, \ldots, n .
$$

Assume $d(a) \leq d(b)$, the proof being similar if $d(b) \leq d(a)$. If $a=a^{\prime} X^{s}$ with ($\left.a^{\prime}, X\right)=1$ and $a^{\prime} \in k[X]$, then

$$
\tau_{X^{s^{\prime}}} \circ \alpha(f)=\sum_{i} a_{i} e_{i}+a^{\prime} X^{s+s^{\prime}} e+b X^{-s^{\prime}} f
$$

and $d(a)=\operatorname{deg} a^{\prime}=d\left(a^{\prime} X^{s+s^{\prime}}\right)$. Therefore we may also assume that $\alpha(f)=$ $\sum_{i} a_{i} e_{i}+a e+b f$ with $a_{i} \in k[X], a=a^{\prime} X^{\prime} \in k[X], l \gg 0,\left(a^{\prime}, X\right)=1, a^{\prime} \in k[X]$. For each $i=1, \ldots, n$, given a_{i} and a^{\prime} there are l_{i} and m_{i} in $k[X]$ with $a_{i}=a^{\prime} l_{i}+m_{i}, m_{i}=0$ or $\operatorname{deg} m_{i}<\operatorname{deg} a^{\prime}=d(a)$. Thus $a_{i}=a q_{i}+m_{i}$ with $q_{i} \in R$ and $m_{i} \in k[X], d\left(m_{i}\right)<d(a)$. Let $w=-\sum_{i} q_{i} e_{i}$. Then

$$
E_{-w}^{*} \circ \alpha(f)=(\xi+a w)+a e+b^{\prime \prime} f \quad \text { where } b^{\prime \prime}=b-a q(w)-\langle\xi, w\rangle
$$

Since $q(\alpha(f))=0$, we have $\sum_{i} a_{i}^{2} \lambda_{i}+2 a b=0$. Hence

$$
\sum_{i} m_{i}^{2} \lambda_{i}=-a^{\prime} X^{\prime}\left(2 b+2 \sum_{i} q_{i} m_{i} \lambda_{i}+\sum_{i} a q_{i}^{2} \lambda_{i}\right)
$$

We choose $l \gg 0$ so that $X \mid \sum_{i} m_{i}^{2} \lambda_{i}$. If $\max _{i}\left\{\operatorname{deg} m_{i}^{2} \lambda_{i}\right\}$ is attained at j, we have

$$
\begin{aligned}
d\left(\sum_{i} m_{i}^{2} \lambda_{i}\right) & \leq \operatorname{deg}\left(\sum_{i} m_{i}^{2} \lambda_{i}\right)-1 \leq \operatorname{deg}\left(m_{j}^{2} \lambda_{j}\right)-1 \\
& \leq 2 \operatorname{deg} m_{j}<2 \operatorname{deg} a^{\prime}=2 d(a)
\end{aligned}
$$

Thus $d\left(\sum_{i} m_{i}^{2} \lambda_{i}\right)<2 d(a)$ and $d(q(\xi+a w))<2 d(a)$. Since $q\left(E_{-w}^{*} \alpha(f)\right)=0$, we have $q(\xi+a w)=-2 a b^{\prime \prime}$ and $d\left(b^{\prime \prime}\right)<d(a)$. Thus we have reduced $\min (d(a), d(b))$ by applying elements of $G_{R}(q, h)$ to α. During this procedure the first n components of $\alpha(f)$ remain polynomials, and hence, repeating the above process only involves applying elements of $O_{R}(h)$ and so we continue decreasing $\min (d(a), d(b))$ till it becomes zero.

Remark 1.4. Let k be a field with characteristic different from 2 and q be a diagonisable space over $R=k[X, 1 / f], f \in k[X]$. Then it can be similarly proved that $O_{R}(q \perp h)=G_{R}(q, h)$.

2. Stable structure of quadratic spaces over $R\left[T, T^{-1}\right]$

Let R be a reduced ring with finite normalisation \bar{R} and let $\mathfrak{C S}$ be the conductor of R in \bar{R}. Let $A, \bar{A}, A / \Subset, \bar{A} / \Subset$ denote the Laurent extensions $R\left[T, T^{-1}\right]$, $\bar{R}\left[T, T^{-1}\right],(R / \mathbb{C})\left[T, T^{-1}\right],(\bar{R} / \mathbb{C})\left[T, T^{-1}\right]$ respectively. Then we have the Cartesian squares

By '~' we will denote 'going modulo $\langle T-1\rangle$ '.

Lemma 2.1. Let S be a ring in which 2 is invertible. Then

$$
\mu_{2}\left(S\left[T, T^{-1}\right]\right)=\mu_{2}(S)
$$

Proof. Let $f=T^{-s}\left(a_{0}+a_{1} T+\cdots+a_{r} T^{r}\right) \in \mu_{2}\left(S\left[T, T^{-1}\right]\right)$. Suppose first that S is reduced. The equation $f^{2}=1$ gives $f=a_{r} \in \mu_{2}(S)$. Now let S be arbitrary and let "" denote 'going modulo N ' where N is the nil radical of S. Then $f^{\prime} \in \mu_{2}\left(S^{\prime}\left[T, T^{-1}\right]\right)=\mu_{2}\left(S^{\prime}\right)$. Let $a \in U(S)$ such that $a^{\prime}=f^{\prime}$. Then $a^{2}=(1+y)^{2}$ for some $y \in N$, since $2 \in U(S)$. Thus $\left[f a^{-1}(1+y)\right]^{\prime}=1^{\prime}$ and $\left[f a^{-1}(1+y)\right]^{2}=1$ so that there exists $z \in N$ with $f a^{-1}(1+y)=1+z$. The equation $(1+z)^{2}=1$ implies $z=0$. Hence $f \in \mu_{2}(S)$.

Lemma 2.2. With notation as above, let q be a quadratic space over A such that $q \otimes_{A} \bar{A}$ and $q \otimes_{A} A / \Subset$ are extended from \bar{R} and R / \Subset respectively. Then q is stably extended from R.

Proof. Let $\varphi: q \otimes_{A} \bar{A} \leadsto \tilde{q} \otimes_{A} \bar{A}$ and $\psi: q \otimes_{A} A / \mathbb{C} \leadsto \tilde{q} \otimes_{A} A / \mathbb{C}$ be isometries over \bar{A} and A / \subseteq respectively such that $\tilde{\varphi}=\tilde{\psi}=$ Id. Then $\varphi^{*-1} \psi^{*} \in O_{\bar{G} / \mathbb{E}}(q)$, where ' $*^{\prime}$ denotes the extensions to \bar{A} / \mathscr{C}. Hence $\varphi^{*-1} \psi^{*} \perp \mathrm{Id} \in O_{\bar{A} / \mathbb{G}}(q \perp h)$. Since \bar{R} / \mathbb{C} is a product of fields modulo its radical, by Lemma 1.3 there exist $\eta \in E O_{\bar{A} / ⿷}(q, h)$ and $\tau \in O_{\bar{A} / \mathbb{\S}}(h)$ such that $\varphi^{*-1} \psi^{*} \perp \mathrm{Id}=\eta \tau$. Since $\tilde{\eta} \tilde{\tau}=\mathrm{Id}$ and $\operatorname{det} \tilde{\eta}=1$ we have $\operatorname{det} \tilde{\tau}=1$. Since $\mu_{2}\left(\bar{A} /(\mathbb{C})=\mu_{2}\left(\bar{R} /(\mathbb{C})\right.\right.$, we have $\operatorname{det} \tau=\operatorname{det} \tilde{\tau}=1$. Thus $\tau=\tau_{u}$ for some $u \in U(\bar{A} /(\mathbb{C})$. Using the Cartesian square (2) and Milnor's result [1, Ch. IX, 5.1] we obtain a rank-1 projective A-module P corresponding to the triple ($\bar{A}, u, A / ®)$. Since $\bar{A} \rightarrow \bar{A} / \mathbb{C}$ is surjective we can lift η to $E O_{A}(q, h)$ and alter φ suitably to assume that $\varphi^{*-1} \psi^{*} \perp \mathrm{Id}=\tau_{u}$. Thus the triples $\left(q \perp h, \mathrm{Id} \perp \tau_{u}, q \perp h\right)$ and $(\tilde{q} \perp h, \mathrm{Id}, \tilde{q} \perp h)$ are equivalent and hence $q \perp H(P) \approx \tilde{q} \perp h$.

We now analyse the structure of the Witt ring $W\left(R\left[T, T^{-1}\right]\right)$. For this we consider the group $K=\operatorname{Ker}(W(R) \rightarrow W(\bar{R}) \oplus W(R / ®))$, the map being the diagonal map induced by the natural maps $R \rightarrow \bar{R}$ and $R \rightarrow R / \mathbb{C}$. The class of any quadratic space in the Witt ring will be denoted by $[\cdot]$. We first remark that given $[q] \in K$, there are isometries

$$
\varphi:(q \perp h) \otimes_{R} \bar{R} \rightrightarrows(H(P) \perp h) \otimes_{R} \bar{R}
$$

over \bar{R} and

$$
\psi:(q \perp h) \otimes_{R} R / \Subset \mathcal{C}(H(P) \perp h) \otimes_{R} R / \Subset
$$

over R / \mathbb{C} for some $P \in \mathscr{P}(R)$. Then $\varphi^{*} \psi^{*-1} \in O_{\bar{R} / \mathbb{\complement}}(H(P) \perp h)$, ' ${ }^{\prime}$ ' denoting the extensions to \bar{R} / \mathbb{C}. Since \bar{R} / \mathbb{C} is a product of fields modulo its radical, by [2, Theorem 3.3] there exist $\eta \in E O_{\bar{R} / \mathbb{E}}(H(P), h)$ and $\tau \in O_{\bar{R} / \mathbb{区}}(h)$ such that $\varphi^{*} \psi^{*-1}=\eta \tau$. We can lift η to an element of $E O_{\bar{R}}(H(P), h)$ and alter φ suitably to assume that $\varphi^{*} \psi^{*-1}=\tau$. Using the Cartesian square (1) we get a rank 2 quadratic space q_{0} over R which corresponds to the triple (h, τ, h). Thus $q \perp h \sim H(P) \perp q_{0}$ and hence, $[q]=\left[q_{0}\right]$ in $W(R)$. Thus any element of K has a representative of the form $\left[q_{0}\right]$. The trivial element of K corresponds to the class of (h, τ_{u}, h) for any $u \in U(\bar{R} / \mathbb{C})$.

Using this representation we now prove
Proposition 2.3. With the notation as above, the map $F: K \rightarrow \mu_{2}(\bar{R} / \mathbb{G}) /\left(\mu_{2}(\bar{R})\right.$. $\left.\mu_{2}(R / \mathbb{C})\right)$ defined by $F([q])=\overline{\operatorname{det} \tau}$ is a group isomorphism, where q corresponds to the triple (h, τ, h) and bar denotes the class in $\mu_{2}(\bar{R} / \mathbb{C})\left(\mu_{2}(\bar{R}) \cdot\left(\mu_{2}(R / \mathbb{C})\right)\right.$.

Proof. F is well-defined, since τ uniquely defines $[q]$ up to equivalence. Let $\left[q_{0}\right],\left[q_{0}^{\prime}\right] \in K$ be defined by the class of the triples (h, τ, h) and (h, τ^{\prime}, h). Then $\tau \perp \tau^{\prime} \in O_{\bar{R} / \mathbb{G}}(h \perp h)$ and hence there exist $\eta^{\prime \prime} \in E O_{\bar{R} / \mathbb{G}}(h, h)$ and $\tau^{\prime \prime} \in O_{\bar{R} / \mathbb{G}}(h)$ such that $\tau \perp \tau^{\prime}=\eta^{\prime \prime} \tau^{\prime \prime}$. Then

$$
\begin{aligned}
F\left(\left[q_{0}\right]+\left[q_{0}^{\prime}\right]\right) & =F\left(\left[q_{0} \perp q_{0}^{\prime}\right]\right)=\overline{\operatorname{det} \tau^{\prime \prime}} \\
& =\overline{\operatorname{det} \tau} \cdot \overline{\operatorname{det} \tau^{\prime}}=F\left(\left[q_{0}\right]\right) \cdot F\left(\left[q_{0}^{\prime}\right]\right)
\end{aligned}
$$

which shows that F is a homomorphism.
Let $[q] \in K$ be given by the class of the triple (h, τ, h) and $F([q])=1$. Then det $\tau=u v$ for $u \in \mu_{2}(\bar{R}), v \in \mu_{2}(R / \mathbb{C})$. Since 2 is a unit in \bar{R} and R / \subseteq, the maps $O_{\bar{R}}(h) \xrightarrow{\text { det }} \mu_{2}(\bar{R})$ and $O_{R / \bar{E}}(h) \xrightarrow{\text { det }} \mu_{2}(R / \mathbb{(})$ are surjective. Thus we can lift u and v and alter τ suitably to assume that (h, τ, h) is equivalent to ($h, \tau_{u^{\prime}}, h$) for some $u^{\prime} \in \mu_{2}(\bar{R} / \S)$. Thus $[q]=0$, showing that F is injective.

Let $u \in \mu_{2}(\bar{R} / \mathbb{C})$. Let $\tau \in O_{\bar{R} / \mathbb{G}}(h)$ s.t. det $\tau=u$. Then (h, τ, h) defines an element $[q] \in K$ such that $F([q])=\bar{u}$ and hence F is surjective.

We next compute K for two rings.
Example 1 [7, Proposition 4.5]. $R=k\left[t^{2}, t^{3}\right.$], k is a field of characteristic $\neq 2$. Then $\bar{R}=k[t], I=\left\langle t^{2}, t^{3}\right\rangle, \quad R / \Subset \neg k, \quad \bar{R} / \Subset \mathcal{G}[t] /\left\langle t^{2}\right\rangle, \quad \mu_{2}(R / \mathbb{C})=\{ \pm 1\}=\mu_{2}(\bar{R} / \mathbb{C})=$ $\mu_{2}(\bar{R})$. Thus $K \leadsto\{1\}$.

Example 2. Let $R=\mathbb{C}[X, Y] /\left\langle Y^{2}-X^{2}-X^{3}\right\rangle$. Then $\bar{R}=\mathbb{C}[y / x]$ where x and y denote the classes of X and Y modulo $\left\langle Y^{2}-X^{2}-X^{3}\right\rangle$ and $\mathbb{C}=\langle x, y\rangle$. Thus $R / \mathbb{\subseteq} \Rightarrow \mathbb{C}$ and $\bar{R} / \subseteq \subseteq \mathbb{C}[y / x] /\left\langle(y / x)^{2}-1\right\rangle$ so that $\mu_{2}(\bar{R})=\mu_{2}(R / \mathbb{C})=\{ \pm 1\}$ and $\mu_{2}(\bar{R} / \mathbb{(})=\{ \pm 1, \pm y / x\}$. Thus $K \rightarrow \mathbb{Z} / 2 \mathbb{Z}$.

We now use K to prove the following

Theorem 2.4. There is an exact sequence of groups

$$
0 \rightarrow K \xrightarrow{f} W(R) \oplus W(R) \xrightarrow{g} W\left(R\left[T, T^{-1}\right)\right) \rightarrow 0
$$

where $f([q])=([q],[q])$ and $g\left(\left[q_{1}\right],\left[q_{2}\right]\right)=\left[q_{1}\right]-\left[T q_{2}\right]$ for $[q] \in K$ and $\left[q_{1}\right],\left[q_{2}\right] \in$ $W(R)$.

Proof. Clearly f and g are well-defined and f is injective. To prove that g is surjective we consider $[q] \in W\left(R\left[T, T^{-1}\right]\right)$ where the representative q is of rank ≥ 3 and has Witt index ≥ 1. Since \bar{R} is a product of Dedekind domains by [5, Theorem 3.5] we have $\left[q \otimes_{A} \bar{A}\right]=\left[q_{0}^{\prime} \perp T q_{1}^{\prime}\right]$ in $W(\bar{A})$ for some quadratic spaces q_{0}^{\prime} and q_{1}^{\prime} over \bar{R}. Since R / \Subset is a product of fields modulo its radical, by [5, Lemma 1.2] there exist quadratic spaces $q_{0}^{\prime \prime}, q_{1}^{\prime \prime}$ over R / \mathbb{C} such that $\left[q \otimes_{A} A / \mathfrak{(}\right]=\left[q_{0}^{\prime \prime} \perp T q_{1}^{\prime \prime}\right]$ in $W(A / \mathfrak{(})$. Thus

$$
\left[\left(q_{0}^{\prime} \perp T q_{1}^{\prime}\right) \otimes_{\bar{A}} \bar{A} / \mathbb{C}\right]=\left[\left(q_{0}^{\prime \prime} \perp T q_{1}^{\prime \prime}\right) \otimes_{A / \mathbb{G}} A / \mathbb{C}\right]
$$

in $W\left(\bar{A} /(\mathbb{C})\right.$. Now there exist integers $l_{0}, l_{1}, m_{0}, m_{1} \geq 0$ and anisotropic quadratic spaces $q_{0}^{* \prime}, q_{0}^{* \prime \prime}, q_{1}^{*^{\prime}}, q_{1}^{* \prime \prime}$ over \bar{R} / \mathbb{C} such that

$$
\begin{aligned}
& q_{0}^{\prime} \otimes_{\bar{A}} \bar{A} / \Subset \leftrightharpoons q_{0}^{* \prime} \perp h^{l_{0}}, \quad q_{0}^{\prime \prime} \otimes_{A /(} \bar{A} / \Subset \leftrightharpoons q_{0}^{* \prime \prime} \perp h^{m_{0}}, \\
& q_{i}^{\prime} \otimes_{\bar{A}} \bar{A} / \Subset \rightarrow q_{1}^{* \prime} \perp h^{l_{1}}, \quad q_{1}^{\prime \prime} \otimes_{A / \mathbb{C}} \bar{A} / \varsigma \leftrightarrows q_{1}^{* \prime \prime} \perp h^{m_{1}} .
\end{aligned}
$$

Since $\bar{R} /(\mathbb{C}$ is a product of fields modulo its radical, by [5, Lemma 1.3] we have $q_{0}^{* \prime} \perp T q_{1}^{* \prime} \rightrightarrows q_{0}^{* \prime \prime} \perp T q_{1}^{* \prime \prime}$. Thus $q_{0}^{* \prime} \rightrightarrows q_{0}^{* \prime \prime}$ and $q_{1}^{* \prime} \rightrightarrows q_{1}^{* \prime \prime}$ over \bar{R} / \mathfrak{C}. Hence there are integers $i_{0}, i_{1}, j_{0}, j_{1} \geq 0$ and isometries

$$
\beta_{0}:\left(q_{0}^{\prime} \perp h^{i_{0}}\right) \otimes_{\bar{R}} \bar{R} / \Subset \leftrightharpoons\left(q_{0}^{\prime \prime} \perp h^{j_{0}}\right) \otimes_{R / \mathbb{C}} \bar{R} / \mathbb{C}
$$

and

$$
\beta_{1}:\left(q_{1}^{\prime} \perp h^{i_{1}}\right) \otimes_{\bar{R}} \bar{R} / \Subset \leftrightharpoons\left(q_{1}^{\prime \prime} \perp h^{j_{1}}\right) \otimes_{R / \Subset} \bar{R} / \Subset
$$

over \bar{R} / \subset. Let q_{0}, q_{1} be quadratic spaces over R defined by the triples ($q_{0}^{\prime} \perp h^{i_{0}}$, $\beta_{0}, q_{0}^{\prime \prime} \perp h^{j_{0}}$) and ($q_{1}^{\prime} \perp h^{i_{1}}, \beta_{1}, q_{1}^{\prime \prime} \perp h^{j_{1}}$) respectively and obtained from the Cartesian square (1). Let $[P]=[q]-\left[q_{0}\right]-\left[T q_{1}\right]$ in $W\left(R\left[T, T^{-1}\right]\right)$. Then $[p]$ is trivial in $W(\bar{A})$ and $W(A / \mathbb{C})$. Thus $p \otimes \bar{A}$ and $p \otimes A / \mathbb{C}$ are extended from \bar{R} and R / \mathbb{C} respectively. Hence, by Lemma 2.2, p is stably extended from R. Thus $[p]=[\tilde{p}] \in W(R)$. Thus

$$
[q]=\left[q_{0} \perp \tilde{p} \perp T q_{1}\right]=g\left(\left[q_{0} \perp \tilde{p}\right],\left[-q_{1}\right]\right) .
$$

To show that $\operatorname{Ker} g=\operatorname{im} f$ consider $\left(\left[q_{1}\right],\left[q_{2}\right]\right) \in \operatorname{Ker} g$. Then $\left[q_{1}\right]=\left[T q_{2}\right]$ and hence $\left[q_{1}\right]=\left[\tilde{q}_{1}\right]=\left[\tilde{T} q_{2}\right]=\left[q_{2}\right]=[q]$, say, in $W(R)$. Since \bar{R} is a product of Dedekind domains, we may assume \bar{R} is a domain with quotient field k. Then $[q]=[T q]$ in $W\left(k\left[T, T^{-1}\right]\right)$ so that $q \perp h^{r} \leftrightarrows T q \perp h^{r}$ over $k\left[T, T^{-1}\right]$ for some $r>0$. Thus, by [5, Lemma 1.3], $q \stackrel{\rightarrow}{\leftrightarrows}$ Tq. Hence q is hyperbolic over k. Since $W(\bar{R}) \rightarrow W(k)$ is injective, $q \otimes_{R} \bar{R}$ is hyperbolic over \bar{R}. Similarly, since $[q]=[T q]$ over A / \subseteq and R / \mathbb{C} is a product of fields modulo its radical, $q \otimes_{R} R / \Subset$ is hyperbolic over R / \mathbb{C}.

Thus $\left[q\left[\in K\right.\right.$ and $f([q])=\left(\left[q_{1}\right],\left[q_{2}\right]\right)$, so that $\operatorname{Ker} g \subseteq \operatorname{Im} f$. Also, if $[q] \in K$, then q is stably hyperbolic over \bar{R} and $R / \mathfrak{(}$, so that $T q$ is stably hyperbolic over \bar{A} and $A / \mathbb{(}$. Thus, by Lemma 2.2, $[T q]=[\tilde{T} q]=[q]$ and hence $g f([q])=[q]-[T q]=0$, so that $\operatorname{Im} f \subseteq \operatorname{Ker} g$.

Remark. In the course of the proof of the above theorem we have proved that given a quadratic space q over $R\left[T, T^{-1}\right]$ there exist quadratic spaces q_{0} and q_{1} over R such that $[q]=\left[q_{0} \perp T q_{1}\right]$ in $W\left(R\left[\dot{T}, T^{-1}\right]\right)$.

3. Cancellation of quadratic spaces over $R\left[T, T^{-1}\right]$

Proposition 3.1. Let R be a Dedekind domain and q be a quadratic space over $R\left[T, T^{-1}\right]$ of Witt index ≥ 2. Then q is cancellative.

Proof. It is enough to prove that if q^{\prime} is a quadratic space over $R\left[T, T^{-1}\right]$ such that $q \perp h \leadsto q^{\prime} \perp h$, then $q \underset{\rightarrow}{\rightarrow} q^{\prime}$. By [5, Theorem 3.5], $q \leadsto q_{1} \perp T q_{2} \perp h \perp H(Q)$ where q_{1} and q_{2} are quadratic spaces over R and Q is a rank-1 projective R-module. Thus q^{\prime} is stably isometric to $\left(q_{1} \perp h\right) \perp T q_{2} \perp H(Q)$ so that $q^{\prime} \rightrightarrows\left(q_{1} \perp h\right) \perp T q_{2} \perp H\left(Q^{\prime}\right)$ where Q^{\prime} is a rank-1 projective R-module [5, proof of Theorem 3.5]. Since Witt in$\operatorname{dex} \tilde{q} \geq 2$ and $\operatorname{dim} R=1$ and

$$
q_{1} \perp q_{2} \perp h \perp H\left(Q^{\prime}\right) \perp h \sim q_{1} \perp q_{2} \perp \dot{h} \perp H(Q) \perp h
$$

we have, by [8, Theorem 7.2.], $h \perp H\left(Q^{\prime}\right) \rightrightarrows h \perp H(Q)$. Thus $q^{\prime} \rightarrow q$.
Using this proposition we prove

Theorem 3.2. Let R be a ring of dimension one with finite normalisation and in which 2 is invertible. Let q be a quadratic space over $R\left[T, T^{-1}\right]$ with Witt index ≥ 2. Then q is cancellative.

Proof. We use the notation of Section 2. It is enough to prove that if q^{\prime} is a quadratic space over A such that $q \perp h \leadsto q^{\prime} \perp h$, then $q \widetilde{\rightarrow} q^{\prime}$. Since Witt index $q \geq 2$ there exists a rank-1 projective A-module P and a quadratic space q_{0} over A such that $q=q_{0} \perp H(P) \perp h$. Since \bar{R} is a product of Dedekind domains, by Proposition 3.1 we have an isometry

$$
q^{\prime} \otimes_{A} \bar{A} \xrightarrow{\varphi}\left(q_{0} \perp H(P) \perp h\right) \otimes_{A} \bar{A} .
$$

Since $\operatorname{dim} A / \Subset=1$, by [8, Theorem 7.2] we have an isometry

$$
q^{\prime} \otimes_{A} A / \S \xrightarrow{\stackrel{\psi}{\sim}}\left(q_{0} \perp H(P) \perp h\right) \otimes_{A} A / \complement
$$

thus $\psi^{*} \varphi^{*-1} \in O_{\bar{A} / \mathbb{\mathbb { C }}}\left(q_{0} \perp H(P) \perp h\right)$ where ' $*$ ' denotes the extension to \bar{A} / \mathbb{C}. Since
$\bar{R} /\left(\mathbb{C}\right.$ is a product of fields modulo its radical, by Lemma 1.3 we have $\psi^{*} \varphi^{*-1}=\tau \eta$ for some $\tau \in O_{\bar{A} / \mathbb{\nwarrow}}(h), \eta \in E O_{\bar{A} / \mathbb{®}}\left(q_{0} \perp H(P), h\right)$. Since $\bar{A} \rightarrow \bar{A} / \mathbb{\nwarrow}$ is a surjection, we can lift η to $E O_{A}\left(q_{0} \perp H(P), h\right)$ and alter φ suitably to assume that $\varphi^{*} \psi^{*-1}=\tau$. Using the Cartesian square (2) we get a rank-2 quadratic space q_{2} over A which corresponds to the triple (h, τ, h). Then, since the triples ($q^{\prime}, \mathrm{Id}, q^{\prime}$) and ($q_{0} \perp H(P) \perp h$, Id $\left.\perp \tau, q_{0} \perp H(P) \perp h\right)$ are equivalent, we get $q^{\prime} \rightarrow q_{0} \perp H(P) \perp q_{2}$. To complete the proof we show that $H(P) \perp q_{2} \rightrightarrows H(P) \perp h$. Since $\operatorname{dim} R=1$ and q and q^{\prime} are stably isometric, by [8, Theorem 7.2], $\tilde{q}^{\prime} \rightrightarrows \tilde{q}$. Hence we have an isometry $H(\tilde{P}) \perp \tilde{q}_{2} \xrightarrow{\theta}$ $H(\bar{P}) \perp h$ over R. Since \bar{R} is a product of Dedekind domains, $\operatorname{Pic} \bar{R}=\operatorname{Pic} \bar{A}$. Also $q_{2} \otimes_{A} \bar{A} \leadsto h$. Thus we have isometries

$$
\varphi_{1}:\left(H(P) \perp q_{2}\right) \otimes_{A} \bar{A} \rightrightarrows\left(H(\tilde{P}) \perp \tilde{q}_{2}\right) \otimes_{R} \bar{A}
$$

and

$$
\varphi_{2}:(H(P) \perp h) \otimes_{A} \bar{A} \rightrightarrows(H(\bar{P}) \perp h) \otimes_{R} \bar{A}
$$

over \bar{A} such that $\tilde{\varphi}_{1}=\mathrm{Id}=\tilde{\varphi}_{2}$, and hence we get an isometry

$$
\varphi^{\prime}=\varphi_{2}^{-1} \theta \varphi_{1}:\left(H(P) \perp q_{2}\right) \otimes_{A} \bar{A} \leftrightharpoons(H(P) \perp h) \otimes_{A} \bar{A}
$$

such that $\tilde{\varphi}^{\prime}=\theta$. Similarly, since $\operatorname{dim} R / \mathbb{C}=0$, we have an isometry

$$
\psi^{\prime}:\left(H(P) \perp q_{2}\right) \otimes_{A} A / \mathbb{C} \rightarrow(H(P) \perp h) \otimes_{A} A / \mathbb{C}
$$

such that $\tilde{\psi}^{\prime}=\theta$. Then $\varphi^{\prime *} \psi^{\prime *-1} \in O_{\bar{A} / \mathbb{G}}(H(P) \perp h)$. By Lemma 1.3 there exist $\eta^{\prime} \in E O_{\bar{A} / \mathbb{\subseteq}}(H(P), h)$ and $\tau^{\prime} \in O_{\bar{A} / \mathbb{E}}(h)$ such that $\varphi^{\prime *} \psi^{\prime *-1}=\eta^{\prime} \tau^{\prime}$. Hence $\tilde{\eta}^{\prime} \tilde{\tau}^{\prime}=$ Id so that $\tilde{\tau}^{\prime} \in E O_{\bar{R} / \mathbb{\S}}(H(\tilde{P}), h)$. Thus, by Lemma 1.1, $\tilde{\tau}^{\prime}=\tau_{u_{0}^{2}}$ for some $u_{0} \in U(\bar{R} / \mathbb{C})$. Since $\mu_{2}(\bar{A} / \mathbb{C})=\mu_{2}(\bar{R} / \mathbb{C})$ we have $\operatorname{det} \tau^{\prime}=\operatorname{det} \tilde{\tau}^{\prime}=1$ and hence $\tau^{\prime}=\tau_{u}$ for some $u \in U\left(\bar{A} /(\mathbb{C})\right.$ with $\tilde{u}=u_{0}^{2}$. We can lift η^{\prime} to an element of $E O_{\bar{A}}(H(P), h)$ and alter φ^{\prime} suitably to assume $\varphi^{\prime *} \psi^{* *-1}=\tau_{u}$. Since $q \perp h \leadsto q^{\prime} \perp h$ and Witt index $H(P) \perp h \perp h \geq 2$, by [8, Theorem 7.2] we have $(H(P) \perp h) \perp h \leadsto\left(H(P) \perp q_{2}\right) \perp h$ so that the triples $((H(P) \perp h) \perp h, \mathrm{Id} \perp \mathrm{Id},(H(P) \perp h) \perp h)$ and $\left((H(P) \perp h) \perp h, \tau_{u} \perp\right.$ Id, $(H(P) \perp h) \perp h)$ are equivalent. Hence there exist $\alpha \in O_{\bar{A}}(q)$ and $\beta \in O_{A / \S}(q)$ such that $\alpha^{*} \beta^{*-1}=\tau_{u} \perp$ Id. Thus, applying the spinor norm homomorphism [1, 3.3] we get

$$
\mathrm{SN}\left(\alpha^{*}\right) \mathrm{SN}\left(\beta^{*-1}\right)=\mathrm{SN}\left(\tau_{u} \perp \mathrm{Id}\right)=\langle u\rangle \quad[1,4.4 .1]
$$

We have exact sequences

connected by the natural inclusions. Since $\operatorname{SN}\left(\alpha^{*}\right)=\mathrm{SN}(\alpha) \in \operatorname{Disc} \bar{A}$, there exists $\gamma \in \operatorname{Disc} \bar{R}$ such that $\theta_{2}(\gamma)=\theta_{1}(\operatorname{SN}(\alpha))$ and hence there exists $v \in U(\bar{A})$ such that $v=\gamma^{-1} \otimes \mathrm{SN}(\alpha)$ modulo $U(\bar{A})^{2}$. Thus $\mathrm{SN}\left(\alpha^{*}\right)=v\left\langle\gamma^{\prime}\right\rangle$, where $\gamma^{\prime} \in U(\bar{R} /(\mathbb{C})$, since Pic
$\bar{A} / \mathbb{C}=0$. Also $\mathrm{SN}\left(\beta^{*-1}\right)=\mathrm{SN}(\beta)^{-1}=\langle a\rangle$ for some $a \in U(A / \mathbb{C})$, since Pic $A / \subseteq=0$. Thus, over $\bar{A} / \mathbb{(},\langle u\rangle=\langle v\rangle\left\langle\gamma^{\prime}\right\rangle\langle a\rangle$. Since Disc $\bar{A} /(\subseteq) U(\bar{A} /(\mathbb{S}) / U(\bar{A} / \mathbb{(}))^{2}$, there exists $b \in U(\bar{A} / \mathbb{C})$ such that $u=v \gamma^{\prime} a b^{2}$. Thus $u_{0}^{2}=\tilde{u}=\tilde{v} \gamma^{\prime} \tilde{a} \tilde{b}^{2}$ and hence $u=\left(v \tilde{v}^{-1}\right)$ $\left(a \tilde{a}^{-1}\right)\left(u_{0}^{2} b^{2} \tilde{b}^{-2}\right)$. By Lemma 1.2, Id $\perp \tau_{\mu_{0}^{2}} b^{2} \tilde{b}^{-2} \in E O_{\bar{A} / \mathbb{G}}(H(P), h)$, and hence can be lifted to $E O_{\bar{A}}(H(P), h)$. Also $v \tilde{v}^{-1} \in U(\bar{A})$ and $a \tilde{a}^{-1} \in U(A /(\mathbb{C})$. Thus we can alter φ^{\prime} and ψ^{\prime} suitably to obtain $\varphi^{\prime *} \psi^{\prime *-1}=$ Id. Hence $H(P) \perp q_{2} \leftrightharpoons H(P) \perp h$ and $q^{\prime} \mathcal{\leftrightarrows} q$.

References

[1] H. Bass, Algebraic K-theory (Benjamin, New York, 1968).
[2] M. Eichler, Quadratische Formen und Orthogonale Gruppen (Springer, Berlin, 1952).
[3] M. Karoubi, Localisation de formes quadratiques II, Ann. Sci. École Norm. Sup. (4) 8 (1975) 99-155.
[4] R. Parimala, Quadratic forms over polynomial rings over Dedekind domains, Amer. J. Math. 103 (1981) 289-296.
[5] R. Parimala, Quadratic forms over Laurent extensions of Dedekind domains, Trans. Amer. Math. Soc. 277 (1973) 569-578.
[6] R. Parimala and P. Sinclair, Quadratic forms over polynomial extensions of rings of dimension 1, J. Pure Appl. Algebra 24 (1982) 293-302.
[7] R. Parimala and R. Sridharan, Quadratic forms over rings of dimension 1, Comm. Math. Helv. 55 (1980) 634-644.
[8] A. Roy, Cancellation of quadratic forms over commutative rings, J. Algebra 10 (1968) 286-298.

